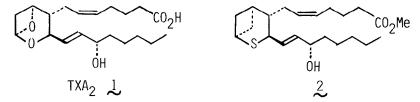
Tetrahedron Letters, Vol. 22, No. 14, pp 1345 - 1348,1981 Printed in Great Britain


SYNTHESIS OF THROMBOXANE A₂ ANALOG DL-(9,11),(11,12)-DIDEOXA-(9,11)-METHYLENE-(11,12)-EPITHIO-THROMBOXANE A₂ METHYL ESTER

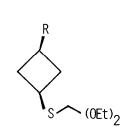
Shunji Kosuge, Nobuyuki Hamanaka[#]and Masaki Hayashi Research Institute, ONO Pharmaceutical Co., Ltd. Shimamoto-cho, Mishima-gun, Osaka 618, Japan

Summary; A synthesis of the thromboxane A₂ analog, <u>dl</u>-(9,11),(11,12)-dideoxa-(9,11)-methylene-(11,12)-epithio-thromboxane A₂ methyl ester 2, is described.

Thromboxane A_2 (TXA₂) 1, which was discovered in the metabolites of arachidonic acid in human platelets, is a potent inducer of platelet aggregation and contraction of vascular and bronchial smooth muscle. However, this substance is very unstable in spite of its important biological actions. That has urged a number of chemists to synthesize the stable analogs possessing biological activities.

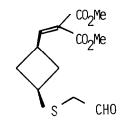
In the previous paper, we have reported the synthesis of the dimethylene analog of TXA_2^2 . Furthermore, some analogs have been also reported³. In the particularly unstable prostaglandins, e.g. PGH₂ or PGI₂, the analogs, in which the oxygen atoms in the chemically unstable moieties were replaced by methylene groups, nitrogen atoms and/so sulfur atoms, possessed the chemical stabilities and the interesting biological activities⁴. We would like to report here the synthesis of TXA₂ analog 2, in which the two oxygen atoms in the bicyclic rings were replaced by a methylene group and a sulfur atom⁵.

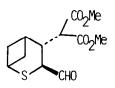
The vinylcyclobutanone 3^6 was reduced with NaBH₄ in MeOH to afford <u>cis</u>alcohol 4(90%), which was converted to the <u>trans</u>-vinyl ester 5 by using diethyl azodicarboxylate-triphenylphosphine-benzoic acid⁷ in THF at 0° [87%, ν 1730,1640,900,m/e 202]. After oxidative cleavage of the olefinic double bond with NaIO₄-OsO₄, Jones oxidation of the resulted aldehyde followed by esterification with diazomethane gave the diester 6[70%, ν 1740, δ 5.36(1H, quintet, J=7Hz),3.68(3H,s),m/e 234]. The diester $\underline{6}$ was transformed into the mesylate $\underline{7}$ in two steps; 1) K₂CO₃-MeOH, 2) MsCl-Et₃N [86%, \mathcal{V} 1735, $\underline{\delta}$ 3.73(3H,s)]. The mesylate $\underline{7}$ was treated with sodium 2-mercaptoacetoaldehyde diethylacetal (2eq) in DMSO at 50° to afford the compound $\underline{8}$ [68%, \mathcal{V} 1730, $\underline{\delta}$ 4.56(1H,t,J=5.5Hz), 2.69(2H,d,J=5.5Hz), m/e 262]. The ester group in $\underline{8}$ was reduced with i-Bu₂AlH to the corresponding aldehyde, which was condensed with dimethyl malonate in the presence of AcOH-pyrrolidine to provide the compound $\underline{9}$ [87%, \mathcal{V} 1730, 1640, $\underline{5}$ 7.1(1H,dd,J=12,9Hz),m/e 346].


After deprotection of the diethylacetal in 9, the intramolecular Michael reaction of the resulted aldehyde 10 was attempted. This cyclization was unsuccessful under several conditions. However, stirring of 10 with a catalytic amount of pyrrolidin-AcOH(2:3) in benzene at rt was effected to give the bicyclic compound 11 [36%, ν 1730, δ 9.49(1H,d,1Hz),3.73(6H,s),m/e 272], accompanied with the compound 12⁸ [14%, δ 9.30(1H,s),7.30(1H,d,J=6Hz), m/e 140].

The compound 11 was condensed with tri-butyl-2-oxoheptylphosphorane⁹ to form the enone 13 [74%, § 6.63(1H,dd,J=15,9Hz),6.19(1H,d,J=15Hz)], of which reduction with NaBH₄ gave two allylic alcohols as a diastereomeric mixture. The hydroxy group was protected with THP without separation of the mixture to give the compound 14. The compound 14 was converted to the corresponding half ester with aqueous NaOH, and then heated in quinoline at 160° for 0.5 h to furnish the compound 15 [72% from 14, \mathcal{V} 1735, δ 5.55(2H,m),4.62(1H,m),3.65 (3H,s),m/e 294 (M-HOTHP)]. The compound 15 was reduced by $i-Bu_2AlH$ to the aldehyde, of which Wittig reaction with the ylide prepared from 5-triphenylphosphoniopentanoic acid¹⁰, and then treatment with diazomethane gave the compound 16 [77%, \mathcal{V} 1735, δ 5.45(4H,m),4.55(1H,m),3.70(3H,s),m/e 464]. Finally, after removal of THP group, separation of the diastereomers by column chromatography on silica gel provided the compound 2 and 17 [40% and 20%, respectively; 2,) 3450, 1735, 965, 8 5.63(2H,m), 4.12(1H,m), 3.68(3H,s), 3.14(1H,m), m/e 380 ;17) 3500,1730,960, § 5.61(2H,m),5.40(2H,m),4.11(1H,m), 3.67(3H,s),3.13(1H,m),m/e 380].

The compounds 2 and 17 showed the moderate contractile activities on the isolated rat aorta [2; CD_{50} 5×10^{-7} g/ml, 17; CD_{25} 10^{-5} g/ml]. However, both compounds did not show any aggregation activities of human platelets.

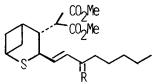

Ċ₽2


 $5 R_1 = CH = CH_2, R_2 = B_z$ $6 R_1 = CO_2 Me, R_2 = Bz$ $7 R_1 = CO_2 Me, R_2 = OMs$

0

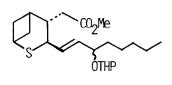
<u>3</u>

 $\begin{array}{l} & \underset{\text{P}}{\overset{\text{R=CO}_2\text{Me}}{\underset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}{\underset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}}{\overset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}}{\overset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}}{\overset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}}{\overset{\text{CO}_2\text{Me}}{\overset{\text{CO}_2\text{Me}}}{\overset{\text{CO}_2\text{Me}}}{\overset{CO}_2\text$



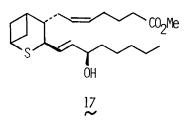
ŐН

4


СНО

12 ~

10 ~


13 R=0 14 R≠1,0THP

 $\overset{11}{\sim}$

15 ~

REFERENCES AND NOTES

- B.Samuelsson, M.Goldyne, F.Gromström, S.Hammarström and C.Malmsten, Am. Rev. Biochem., 47, 997 (1978) and refereces cited.
- 2. S.Ohuchida, N.Hamanaka and M.Hayashi, Tetrahedron Lett., 3661 (1979).
- 3. M.F.Ansell, M.P.L.Caton, M.N.Palfreyman and K.A.J.Stuttle, Tetrahedron Lett., 4497 (1979); K.C.Nicolaou, R.L.Magolda and D.A.Claremon, J. Am. Chem. Soc., <u>102</u>, 1404 (1980); E.J.Corey, J.W.Pouder and P.Ulrich, Tetrahedron Lett., 137 (1980); K.M.Maxey, and G.L.Bundy, ibid, 445 (1980).
- 4. See (PGH₂ analogs) K.C.Nicolaou, G.P.Gasic and W.E.Barnette, Angew. Chem. Intern. Ed., <u>17</u>, 293 (1978) and references cited; B.M.Trost, J.M.Timko and J.L.Stanten, J. Chem. Soc. Chem. Commun., 436 (1978); E.J.Corey, H.Niwa, M.Bloom and P.W.Ramwell, Tetrahedron Lett., 671 (1979); (PGI₂ analogs) K.Shimoji, Y.Arai and M.Hayashi, Chemistry Lett., 1375 (1978) and references cited.; D.R.Morton,Jr. and F.C.Brokaw, J. Org. Chem., <u>44</u>, 2880 (1979); Y.Konishi, M.Kawamura, Y.Arai and M.Hayashi, Chemistry Lett., 1437 (1979) and references cited; G.L.Bundy and J.M.Baldwin, Tetrahedron Lett., 1371 (1978).
- 5. In the accompanying paper, we report the synthesis of the other methylenesulfur analog of TXA₂.
- L.Ghosez, R.Montaigue, A.Roussel, H.Vanlierde and P.Mollet, Tetrahedron, 27, 615 (1971).
- 7. A.K.Bose, B.Lal, W.A.Hoffman and M.S.Manhas, Tetrahedron Lett., 1619 (1973).
- 8. When NaOMe was used as a base, the product was the compound 12.
- N.Finch, L.D.Vecchia, J.J.Fitt, R.Sephani and I.Vlattas, J. Org. Chem., <u>38</u>, 4412 (1973).
- E.J.Corey, N.M.Weinshenker, T.K.Schaaf and W.Huber, J. Am. Chem. Soc., 91, 5675 (1969).

(Received in Japan 11 December 1980)